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Uberblick Giber wichtige Aspekte bei der Einzelfalldiagnostik
Berechnung eines frequentistischen Konfidenzintervalls
Beurteilung von Normstichproben

Normwerte und Prozentrange

Verbalisierung des Konfidenzintervalls & Ruckmeldung
Beispiel

Vorwissen berucksichtigen mit Bayesianischer Statistik
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Bayesianische Statistik als alternativer statistischer Ansatz zur
frequentistischen Statistik:

— Frequentistisches 95% KI. Wenn man unendliche viele Zufallsstichproben
ziehen wurde (bzw. in der Einzelfalldiagnostik eine Person unendlich oft
testen wirde, ohne dass diese sich an die vorherigen Testungen erinnert),
enthalten 95% aller gebildeten Kls den wahren Wert.

— Bayesianisches 95% Kl. Gegeben meiner Vorannahme (Prior), befindet
sich der wahre Wert mit 95% Wahrscheinlichkeit zwischen den
errechneten Intervallgrenzen.

- Ermoglicht den Einbezug von Vorwissen, was in der
Einzelfalldiagnostik sehr praktisch sein kann!
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Grundprinzipien Bayesianische Statistik

,Im Satz von Bayes wird eine bestehende Erkenntnis Uber den zu untersuchenden
Parameter (die A-priori Verteilung, kurz Prior) mit den neuen Erkenntnissen aus den
Daten kombiniert (Likelihood), woraus eine neue, verbesserte Erkenntnis (A-
posteriori Verteilung, kurz Posterior) resultiert.” (nach wikipedia)

Posterior « Likelihood x Prior

Lies: ,Die Posterior ist proportional («) zum Produkt aus Likelihood und Prior*

(McElreath (2020): Kap. 2+3)



https://de.wikipedia.org/wiki/Bayessche_Statistik
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Grundprinzipien Bayesianische Statistik

Beispiel:

« Bob hat einen Testwert von 80 1Q-Punkten im Intelligenztest (x = 80)
« Testwertverteilung: X ~ N(1Q, 0x? - (1 — Rel))

 Wobeiin der Formel...
,IQ" fur die wahre Intelligenz von Bob steht die uns eigentlich interessiert

« ,Rel” fur die Reliabilitat des Testwerts steht, die als bekannt vorausgesetzt wird
- ,0x%“ flr die Varianz des Testwerts steht, in diesem Beispiel 225 wegen IQ-Normwerten

« Die Testwertverteilung entspricht wieder dem vereinfachten Testmodell,
welches wir auch zur Berechnung der approximativen frequentistischen

Konfidenzintervalle herangezogen haben (siehe LE9).
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Grundprinzipien Bayesianische Statistik

Likelihood

« Verteilungsfunktion, die einer beobachteten Variable zugeordnet ist
- ,Wie plausibel ist es die tatsachlich vorliegenden Daten zu beobachten

gegeben bestimmter Werte fur die Modellparameter?”

« Plausibilitat einen Testwert von x = 80 zu beobachten in Abhangigkeit von
verschiedenen wahren [Q-Werten

Plausibility

Exkurs: Einen einzelnen Wert auf der Likelihood Kurve kdnnte
man in R fir das vorliegende Beispiel wie folgt berechnen:
dnorm(80, mean = IQ, sd = sqrt(225*(1-0.7)))

(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2020: Kap. 2+3)
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Grundprinzipien Bayesianische Statistik

Likelihood

 Formalisiert das Wissen, das wir durch die Daten erlangen
« Hangt von der Reliabilitat ab: Je unreliabler der Test, desto breiter ist die

Likelihood (d.h. desto plausibler sind wahre Werte weit weg vom Testwert)

Plausibility

Rel =.70

N
~,
______________________________

90 100 110 120 130

Plausibility

_____________

Rel = .98

_____

90 100 110 120 130

(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2020: Kap. 2+3)
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Prior

« Die Prior-Verteilung ist eine Vorannahme, die definiert, wie plausibel
mogliche wahre Werte in der Population a priori sind (d.h., bevor man die
Daten beobachtet hat)

« Diese Vorannahmen konnen sehr vage sein (,uninformativ®), oder
substantielles Vorwissen enthalten (,informativ®)

« Je sicherer man sich vorher schon ist, desto schmalgipfliger ist die Prior
um den erwarteten Wert herum (- geringere Varianz der Verteilung)

»
Ll

Plausibility
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Plausibility
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IQ 1Q

(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2018: Kap. 2+3)
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______ Pri
_ ngtrerior

Posterior
« ,,Updating process*:

Plausibility

- Wir aktualisieren unser Vorwissen
mit Hilfe der erhobenen Daten

—> daraus resultiert eine (verbesserte)
Wahrscheinlichkeitsverteilung

« Die Posterior-Verteilung quantifiziert die
Plausibilitat moglicher wahrer Werte
nachdem man die Testwerte beobachtet
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(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2018: Kap. 2+3; untere Abbildung: S. 38)
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Grundprinzipien Bayesianische Statistik

Highest Densitiy Interval (HDI)

* Ein bestimmtes Intervall definierter
Masse der Posterior stellt das
bayesianische Kl-Aquivalent dar

« z.B. 95% der Flache =2 95% HDI

 Unter Annahme der Prior kann man mit

diesen bayesianischen Kls dann
Interpretationen uber den wahren Wert

vornehmen

« z.B. ,Der wahre Wert liegt mit 95%
Wahrscheinlichkeit zwischen...”

Plausibility

I I I |

40 60 80 100 120 140 160

Exkurs: Im Gegensatz zu HDIs gibt es auch ,equal-tailed intervals® (ETls). Die genaue Definition
eines HDI haben wir hier nicht besprochen und ist in der Praxis meist irrelevant. HDIs und ETls
unterscheiden sich stark nur bei sehr schiefen Posteriori Verteilungen.

IQ

McElreath, 2018: Kap. 1-3
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Bester Punktschatzer - prior
- Frequentismus: beobachteter Wert ist £
die beste Punkt-Schatzung fir den g
wahren Wert
« Bayes: Modus der Posterior d.h., der 60 70\80 90 100 15 10 145

Gipfel der Verteilung) ist die beste
Punkt-Schatzung fur den wahren Wert

Hinweis: Alternativ zum Modus wird haufig auch der
Erwartungswert oder der Median der Posterior als
bayesianischer Punkt-Schatzer verwendet.

Plausibility

Value

I I I I I
40 60 80 100 120 140 160

IQ

(vgl. Wagenmakers, Morey, & Lee, 2016; McElreath, 2018: Kap. 1-3)
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Beispiel 1: kein Vorwissen

« Testwert = 80 IQ-Punkte, Reliabilitat = .85
« flache (,uninformative®) Prior
- Jeder IQ-Wert von — bis +« ist a priori gleich wahrscheinlich

__________ Likelihood
. 95% ClI Cera T Prior ;
68.6 | | 91.4 —— Posterior
95% HDI
68.6 | | 91.4
Mode = 80.0

Plausibility

|

I I I I I I I T I I I T I I I
60 65 70 75 80 85 90 95100 105 110 115 120125 130 135 140

Value

- Frequentistisches Kl und Bayesianisches HDI (und Punktschatzer) fallen
zusammen
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Beispiel 2: Vorwissen vorhanden

« Testwert = 80 IQ-Punkte, Reliabilitat = .85
« Prior: 1Q ~ N(100, 152) = die Prior ist normalverteilt mit einem Mittelwert von 100

und einer Varianz von 152 bzw. SD von 15

Plausibility

95% CI T Likelihood
68.6 | 1914 L Prior
95% HDI Posterior
72.0 ¥ | 93.2

Mode = 82.6

60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145

Value

- Der wahrscheinlichste Bayes-Punktschatzer ist nicht der Testwert von 80,
sondern liegt bei 82.6
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Beispiel 3: Spezifisches Vorwissen vorhanden |

« Testwert = 80 IQ-Punkte, Reliabilitat = .85

« Prior: 1Q ~ N(130, 152) = die Prior ist normalverteilt mit einem Mittelwert von 130
und einer Varianz von 152 bzw. SD von 15 (Annahme, weil wir wissen, dass die
begutachtete Person aus der Population Mathematikstudierender kommt)

95% CI
68.6 | 1 91.4 e

95% HDI

759 | 1 97.1
Mode = 86.5

Plausibility

[ I I I I I I I I I I I I I I I I I
60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145

Value

Likelihood
Prior
Posterior

- Der wahrscheinlichste Bayes-Punktschatzer ist liegt in diesem Fall bei 86.5
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Beispiel 3: Spezifisches Vorwissen vorhanden i

« Testwert = 80 IQ-Punkte, Reliabilitat = .60

Prior: IQ ~ N(130, 152) - die Prior ist normalverteilt mit einem Mittelwert von 130

und einer Varianz von 152 bzw. SD von 15 (wie auf der Folie vorher)

0,
95% ClI | 98.6

95% HDI
1 110.0

78.6 |

Mode = 94.3

Plausibility

[ I I I I I I I I I I I I I I I I
60 65 70 75 80 8 90 95 100 105 110 115 120 125 130 135 140 145

Value

"""""""" Likelihood
""""" Prior
Posterior

- Je unreliabler das Messinstrument, desto starker der Einfluss der Prior und desto breiter

ist das bayesianische HDI (und auch das frequentistische Ki).
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Fazit: Bayes in der Einzelfalldiagnostik

« Das Bayes-Theorem stellt eine ,Berechnungsvorschrift® dar, wie man
Vorwissen mit neuen Daten verrechnen kann. Das bisher Bekannte (die Prior)
wird mit den neuen Daten aktualisiert, um so den aktualisierten Wissensstand
zu erhalten (die Posterior).

« Damit kann etwas formalisiert werden, was in der Praxis ohnehin implizit
gemacht wird: Urteile mithilfe externer Informationen anzupassen, abhangig
davon, wie stark mein Vertrauen in meine diagnostische Messung ist.

« Wenn man ein reliables Messinstrument hat, kann man dem Messwert relativ
stark vertrauen, und das Vorwissen ist relativ irrelevant

 Wenn das Messinstrument schlecht ist, kann es ratsam sein, vorhandenes
Wissen einzubeziehen:

— Extremfall: Das Messinstrument liefert im Grunde nur Rauschen. Dann
sollte man rationaler Weise nur das Vorwissen nutzen (unter der
Voraussetzung, dass das Vorwissen mehr als nur Rauschen kodiert)

— Sensitivitatsanalysen Uberprufen die Ergebnisse bei Heranziehen
verschiedener (plausibler) Priors
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Fazit: Bayes in der Einzelfalldiagnostik

« Ob die Berlcksichtigung von spezifischem Vorwissen flir meinen
diagnostischen Fall sinnvoll ist, hangt vom Kontext ab

« Dabei stellen sich ahnliche Fragen, wie bei der Auswahl der
Jinteressierenden” Normstichprobe (siehe LE9)

Es gibt Situationen, da mochte ich...

« ...spezifisches Vorwissen uber die von mir getestete Person
berucksichtigen, um die individuelle diagnostische Entscheidung zu
verbessern, z.B. wenn ich in einem neuropsychologischen Setting
herausfinden will, ob eine Person kognitive Defizite durch eine degenerative
Erkrankung aufweist und Vorwissen Uber inre frihere Leistungsfahigkeit oder
aktuelle Beeintrachtigungen im Alltag vorliegt

« ...fur alle getesteten Personen das gleiche Vorwissen verwenden, um
alle Personen gleich (“fair”) zu behandeln, z.B. wenn ich in einem
personalpsychologischen Setting Bewerberinnen basierend auf einem
standardisierten Leistungstest auswahlen will und es nicht vertretbar ist, dass
Personen mit dem gleichen Testwert unterschiedliche Beurteilungen
bekommen
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Fazit: Bayes & Frequentismus

« Unter flachen, uniformativen Priors (Extremfall: Gleichverteilung) sind die

Intervallgrenzen von frequentistischen Konfidenzintervallen und
bayesianischen HDIs sehr nah beisammen (Extremfall: identisch)
« Es stellt sich dann aber die Frage, ob die Prior, bei der eine

numerische Ubereinstimmung entsteht, Uberhaupt plausibel ist!
« Heil3t umgekehrt: Man kann nicht automatisch von einer numerischen
Aquivalenz beider Intervalle ausgehen

« Die Abweichung zwischen den Intervallen ist besonders grol3, ...

a. wenn der Testwert in einen dunn besiedelten Bereich der Prior fallt
b. wenn der Test sehr unreliabel ist
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: Shiny-App zur Berechnung von HDIs
http://shinyapps.org/apps/Bobs_1Q/

Bayesian Credible Interval for an I1Q Test Score

Properties of the test instrument

Test reliability:
est reliability: -- Likelit

0 @ o= - Prior

% Cl —Poste
66.9 95% C |93.1

95% HDI

71.3} {95.3
Between-person standard deviation of the
test scores (e.g. 15 for 1Q scores, or 1 for z

scores)

Mode = 83.3

Density

15

Obtained test score

Observed test score T T T T I T T T T T T T T T T 1
0 (30] 180 60 65 70 75 80 85 90 95 100 110 120 130 140 150

o—— Value

Prior

Mean of prior

100

SD of prior (enter large value, such as 999,
for flat prior)

15

This app extends code from Quentin Gronau and Richard Morey.
"Bob's IQ" is an example from the paper: Wagenmakers, E.-J., Morey, R. D., & Lee, M. D. (2016). Bayesian benefits for the pragmatic researcher. Current Directions in Psychological Science, 25, 169-176

doi:10.1177/0963721416643289.

Technical details: The app assumes a known (fixed) variance for the single data point, which is derived from the reliability of the measurement instrument.

#19


http://shinyapps.org/apps/Bobs_IQ/
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Gesamtfazit

« Nicht nur Punktschatzer betrachten, sondern uber Kl (frequentistisch oder
auch bayesianisch) immer die Unsicherheit in der Messung

mitberucksichtigen und auch kommunizieren!
 Die Reliabilitat des Tests bestimmt u.a. die Prazision der Messung

« Unreliable Tests konnen ein so breites KI/HDI ergeben, dass alle
Werte von unterdurchschnittlich bis uberdurchschnittlich darin
enthalten sind (= d.h. fast alle Werte waren plausibel!)

« Dies betont noch einmal die Wichtigkeit der Verwendung reliabler
Tests in der Einzelfalldiagnostik!
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« Nachste Sitzung Fragestunde am Donnerstag um 10.15 per ZOOM
« Link folgt uber Moodle

 https://Imu-munich.zoom-
xX.de/|/695521164957pwd=LXTLo0ObXB8eXboT8BIXHWRObdWitNxqg.1



https://lmu-munich.zoom-x.de/j/69552116495?pwd=LXTLo0bXB8eXboT8BlXHwRObdWtNxq.1
https://lmu-munich.zoom-x.de/j/69552116495?pwd=LXTLo0bXB8eXboT8BlXHwRObdWtNxq.1
https://lmu-munich.zoom-x.de/j/69552116495?pwd=LXTLo0bXB8eXboT8BlXHwRObdWtNxq.1
https://lmu-munich.zoom-x.de/j/69552116495?pwd=LXTLo0bXB8eXboT8BlXHwRObdWtNxq.1
https://lmu-munich.zoom-x.de/j/69552116495?pwd=LXTLo0bXB8eXboT8BlXHwRObdWtNxq.1
https://lmu-munich.zoom-x.de/j/69552116495?pwd=LXTLo0bXB8eXboT8BlXHwRObdWtNxq.1
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Fragen zur Nachbereitung

« Welche Aspekte sind wichtig bei der Einzelfalldiagnostik? Welche Verfahren zur
Testauswertung kann man unterscheiden?

« Wie berechnet man ein frequentistisches KI? Von welchen Faktoren hangt dessen
Breite ab?

« Was bedeutet ,interessierende” Normstichprobe und welche Eigenschaften der
Normstichprobe sind relevant?

« Wie bildet man Normwerte? Was sind Prozentrange? Was muss man hier jeweils
bei der Interpretation beachten?

« Wie kann man Testwerte klassifizieren?
« Wie sollte die mundliche/schriftliche Ruckmeldung jeweils gestaltet sein?
« Welchen Vorteil hat ein bayesianischer Ansatz in der Einzellfalldiagnostik?

« Nach welchen Grundprinzipien funktioniert Bayes?




Lehrstuhl fir Psychologische Vorlesung
Methodenlehre und Diagnostik : : : Grundlagen der
der Ludwig-Maximilians- Elnzelfa”dlagnOStIk | Diagnostik
Universitat MUnchen SS 25

Quellen zu Bayes

» Hoekstra, R., Morey, R. D., Rouder, J. N., & Wagenmakers, E. J. (2014). Robust
misinterpretation of confidence intervals. Psychonomic Bulletin & Review, 21(5),
1157-1164. http://doi.org/10.3758/s13423-013-0572-3

= McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R
and Stan. Chapman and Hall/CRC.
https://github.com/rmcelreath/stat_rethinking 2024

= Morey, R. D., Hoekstra, R., Rouder, J. N., Lee, M. D., & Wagenmakers, E.-J.
(2015). The fallacy of placing confidence in confidence intervals. Psychonomic
Bulletin & Review, 23, 103—123. http://doi.org/10.3758/s13423-015-0947-8

» Wagenmakers, E. J., Morey, R. D., & Lee, M. D. (2016). Bayesian Benefits for the
Pragmatic Researcher. Current Directions in Psychological Science, 25(3), 169—
176. http://doi.org/10.1177/096372141664 3289
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